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Quantum mechanics of toroidal anyons 
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Laboratory of Theoretical Physics, Joint Institute far Nuclear Research, Dubna, Moscow 
District 141980. USSR 

Received I January 1991 

Abstract We consider a toroidal solenoid with an electric charge attached to it. It turns 
oui that statistical properties of the wavefunction describing interacting toroidal anyons 
depend an both their relative position and orientation. The influence of the particular 
gauge choice on the exchange properties of the wavefunction i s  studied. 

1. Introduction 

Since Wilczek’s profound papers [ l ]  there has been increasing activity in the study of 
systems containing an electric charge and a magnetic flux. These composites, called 
anyons, carry fractional angular momentum and possess unusual statistics. Physically, 
they are manifested a5 quabiparticles in the fractional quantum Hall effect [ 2 ]  and 
probably in high-temperature superconductivity [3]. Up to now only two-dimensional 
anyons have been considered (e.g. see [41). In three-dimensional space an anyon can 
be realized as a cylindrical solenoid with an electric charge attached. It is the goal of 
the present paper to study the system composed of a toroidal solenoid and a charged 
particle. The plan of our exposition is as follows. In section 2 we write out the 
Lagrangian and the Schrodinger equation (SE) describing an interaction of two anyons 
without specifying the type of solFnoid used. In section 3 the main facts concerning 
toroidal solenoids are presented. In section 4 the particular model of a toroidal anyon 
is proposed. The arguments for the existence of multivalued wavefunctions in the field 
of an impenetrable toroidal solenoid are given in section 5. Two interacting toroidal 
anyons are considered in section 6. It turns out that the statistical properties of their 
wavefunction depend on both the anyons’ mutual separation and orientation. The 
influence of the particular gauge choice on the exchange properties of wavefunctions 
is studied in section I .  In the following section we explain why the arguments denying 
the existence of fractional statistics in three-dimensional space do  not work in the 
treated case. 

2. Basic equations 

A composite consisting of a particle with a charge e and a solenoid with a magnetic 
flux 4 is called an anyon [l]. The Lagrangian of this system is [5,6] 

e 
L=fmu2+fMV‘+-A(r -R)  C . ( u - V ) .  (2.1) 
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The notation m, U and M, V refers to the charged particle and the solenoid; A is 
the vector potential produced by the solenoid situated at R at the position r of the 
charged particle. The Lagrangian (2.1) describes both the Aharonov-Bohm and 
Aharonov-Casher [ 5 ]  effects. The latter was recently [7] confirmed experimentally. 
Consider two anyons ( e l b , )  and (e2&) with masses m ,  and m2.  They are described 
by the following Lagrangian [6]: 

e L= fm,u:+$m,u:+- A .  U - V. (2.2) 
C 

Here we put eA=elA12(r,-r2)-e2A21(r2-r,);  A,2(A21)  is the vector potential gener- 
ated by the anyon 2( 1) at the position of anyon l(2); U = u1 -U* and Vis the electromag- 
netic interaction between charged particles. It is suggested here that the particular 
anyon feels only the electromagnetic field of the other. The self-interaction between 
the magnetic flux and the charge of the same anyon is disregarded, which is a routine 
operation in anyon theory. By quantizing the Lagrangian we obtain the following SE: 

Here M = m , + m 2 ,  p = m , m 2 / ( m , +  m2),  R = ( m l r , + m 2 r 2 ) / ( m l +  m 2 ) ,  r =  r ,  - r,. If in 
addition e ,  = e2 = e and m, = m2 = m, then this equation reduces to 

A = A , 2 ( r ) - A 2 , ( - r ) ,  
Separating the centre-of-mass coordinates (V = exp(iKR)V) we get 

(V,  -: A ) 2 V +  ( E  - U)’€’ = 0 

mV U=- mE K 2  
h2 ’ 

E = - - -  
ii2 4 

Let the anyon’s solenoid be toroidal. Similarly to the term ‘cyon’ used for the 
cylindrical anyon [XI, the term ‘toron’ will be used for the toroidal anyon. Some facts 
concerning the toroidal solenoid which are needed for the subsequent discussion will 
be presented in the next section. 

3. The electromagnetic field of the toroidal solenoid 

The magnetic field of the toroidal solenoid ( p  - d),+ z2 = R2 equals H = e&/p inside 
the solenoid and zero outside it. The constant g is expressed through the magnetic 
flux 4: g = $[27r(d --)I-’. In the Coulomb gauge (div A =0)  the vector poten- 
tial of the toroidal soienoid was obtained in [9]. Later it was used for the description 
of the electron scattering on the toroidal solenoid [lo-131. Here, we present its 
components only for the infinitely thin ( R  << d )  solenoid: 

X Y 
P P 

A,=-A, A,=-A, (3.1) 
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Here cosh U = ( r Z +  d 2 ) / 2 d p  and Q! are the Legendre functions of the second kind. 
At large distances A falls as rF3: 

3 r g R 2 d  xz 3.rrgR'd yz 
Ax=-- A,,=-- 

4 r5 4 r' 

r g R 2 d  r2-3z2 A, = -- - 
4 2 

A s  outside the solenoid H = rot A = 0, the vector potential may be presented as a 
gradient of some function x :  A =grad x. This function turns out to be multi-valued 
(more accurately, discontinuous) as 4 A dx = 4 for any contour passing through the 
solenoid's hole. To write this function explicitly we introduce the toroidal coordinates 

sinh f i  cos 'p sinh p sin 'p 
x = a  y = a  

cosh -Cos 0 cosh p -cos R 

sin e 
cosh p-cos  e z = a  

(0 < f i  < CO, -71 < R < r, 0 < 'p < 2 ~ ) .  

Let p = p ,  correspond to the toroidal solenoid S. Then for p>,q,(<fiJ the point 
Pix,  y, z )  (where x, y, z are given by (3.2)) iies inside (outside) S. For f i  fixed (say, 
p = p o )  the points P(x, y, z )  fill the surface of the torus ( p  - d ) * + z 2  = R 2  with the 
parameters d = a coth pLo. R = a/sinh pa. The value of the angle 0 jumps from -T to 
71 when one intersects the circle of the radius d - R lying in the z = 0 plane. Now we 
are able to write out the x function explicitly [9, 101: 

Here Pn-,/* is the Legendre function of the first kind; 
m 

P m =  - Q K - ~ / ~ ( O ) Q K + I / ~ ( ~ )  
K = n  

. .  
;io is giveii bJ 

From now we do not indicate the argument of the Legendre function if it equals 
cosh w ;  further, Q.(O) = Q,(cosh pJ, Pv(0) = P,,(cosh po). Clearly, x transforms into 
v~ fnr thn : n f i n i + o l < i  thin R e A nr , . ~  >> 1 ~ n l . - ~ & A  W P  = p p  +hn+ ., ellanre a G,.... A" .". ..,.,.. *., ...... \=. .." ". p"I ,  ', II".*..".Y. lylllll -,"...F .LV,,, 

- $$ to when one intersects the circle of the radius d - R. lying in the z = O  plane, 
At large distances x falls as F2 (this follows from (3.3)): 

@dR2 cos e, 
S ( d - m )  r2 

X =  - 

(; ai;& 8, are :he = s a !  spherical c3o;dina:e;). 2 , s  i;i;i:ary :iai;&;ma:ioi; **= 
Y'exp(iex/hc) may be used to eliminate vector potentials outside the solenoid. The 
transformed wavefunction is multi-valued if the initial wavefunction '4' is single-valued: 

Y ' ( p s d - R ,  z=O-)=V'(pSd-R,z=O+)exp(- iy) .  (3.4) 

Here y = e@/hc. The reverse is also true. 
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For the arbitrary orientation of the solenoid the vector potential at the point r is 
given by 

A t ( r ) = 1 & ( p ,  e,$)&(*). 
Here AK are given by (3.1), R is the usual rotation matrix and p, 0, $ are the angles 
defining the orientation of the solenoid fixed frame with respect to the laboratory one. 

4. The particular realization of a toron 

Usually, in treating the anyon problem one does not specify the way in which the 
charge is attached to the solenoid. One of the possible ways to do this is to charge the 
surface ( p  = po) of the toroidal solenoid. To exclude the appearance of the currents 
at the solenoid surface the latter should be at the constant electrostatic potential bo. 
The elementary calculations show [14] that the electric charge should be distributed 
over the solenoid surface with the density 

From now we suggest that the summation, if it is not specified, extends from n = 0 
to n =CO. The electrostatic potential generated by this density equals b,, inside the 
toroidal solenoid ( p  > p,,) and 

outside it. The total surface charge e may be expressed through &: 

4a4, 1 Qn--1 /2(0)  

1 + F"0 Pn--1/2(0) ' 
e = -  1- 

7r 

The subsequent consideration does not depend on this particular realization 

5. The possibility of multi-valued wavefunctions in the field of a toroidal solenoid 

We present here the arguments for the existence of multi-valued wavefunctions in the 
magnetic field of an impenetrable toroidal solenoid. But, firstly, we repeat similar 
arguments [15-171 for the well-known case of a cylindrical solenoid. Consider two 
identical charged particles 1 and 2 in the field of an infinite cylindrical solenoid (figure 
1 ) .  Now we exchange particles 1 and 2. This procedure is path dependent if multi-valued 
wavefunctions are used, The wavefunctions remain the same if there is no net magnetic 
flux inside the closed contour composed of exchange paths 1 and 2: W(2,l) = Y(1,2). 
On the other hand, the wavefunctions change when the finite magnetic flux 4 is 
presented inside the above closed contour "(2, l )="( l ,  2) exp(iy), y =  e4 /hc .  If 
y = 2 m  then "(2, l )=V( l ,Z) ,  i.e. the presence of the magnetic flux does not affect 
the exchange properties of the wavefunctions. When y =  7r(2n+ 1) one has Y(2 , l )  = 
-T( 1 ,  2), that is, the particles behave as fermions. For arbitrary y one has intermediate 
statistics (between bosons and fermions). The impenetrability of the solenoid guarantees 
that exchange paths shown at the lower part of figure 1 cannot be continuously deformed 
(or shrunk to a point) into that presented at the upper part of the same figure. 
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Figure 1. The trivial (upper pan) and non-trivial (lower part) exchange paths in the field 
of a cylindrical solenoid. The space region where H # O  is blacked in. The inaccessible 
region is hatched. 

Now we turn to the behaviour of wavefunctions in the magnetic field of an 
impenetrable toroidal solenoid. In figure 2 there are shown exchange paths which do  
not embrace t h e  magnetic flux 4. Each of them can be contracted to a point without 
intersecting the impenetrable torus. Thus, #(2,1) = #(1 ,2 )  for them. Some of the 
topologically non-trivial exchange paths are shown in figure 3. None of them can be 
either shrunk to a point or deformed into each other without intersecting the impen- 
etrable torus (and the flux 4) .  If multi-valued wavefunctions are used one has lY(2,l) = 
W ( l , 2 )  exp(Fiy) for the upper and middle parts of figure 3, respectively, while 
"(2, l )=Y(l ,2)exp(-2 iy)  for the lower part (as before y = e @ / h c  where 4 is the 
magnetic flux inside the toroidal solenoid). This situation strongly resembles that of 
the cylindrical solenoid, but there are more topologically non-equivalent possibilities. 
As for the cylindrical solenoid the double exchange of particles does not in general 
lead to the initial wavefunction. For example, under the double exchange composed 
of single exchanges (each in the clockwise direction), presented in the upper part of 
figure 3, the wavefunction acquires the factor exp(-2iy). 

2 1 '  

.__-' 
Figure 2. The trivial exchange paths in the field o f  a toroidal solenoid. 
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1 2 . , 
. __d  
. 

1 2 

. _- 
Figure 3. The non-trivial exchange paths in the field of a toroidal solenoid. 

6. Interacting torons 

Now we return to interacting torons. Consider first the simplified case when the 
symmetry axes of toroidal solenoids 1 and 2 are parallel to the z-axis. In addition, the 
solenoids are assumed to be thin (Rj<< d , ,  R2<< dJ.  Then, it follows from (3.1) that 
outside the solenoids one has 

Here QP(I)=QY(coshu,),  sinh v,=(r2+d:j/2d,p, x=x,-x,, etc. p =  7, x + y  r = 
( ~ ~ + y ~ + z ~ ) ' / ~ .  The vector potential A , 2  is obtained from A , ,  by the interchanging of 
particle subscripts 1 and 2. The vector potential thus obtained are symmetrical with 
respect to interchange of particle coordinates: 

A I 2 ( r , ,  r 2 ) = A t 2 ( r 2 ,  r l )  A d r , ,  r2) = A 2 , ( r 2 ,  P I ) .  (6.2) 

The vector potentials A , ,  and A:, may be expressed as gradients of multi-valued 
functions x l 2 ( r )  and x 2 , ( r ) :  

A,,=grad.x,, A,> = grad,x,, . 
The functions x 2 ,  and x , ~  are obtained from (3.3) by making the substitution 4 -t &, 
t ~ o p , .  ga~g,a,=(4,/27r)(cothtLL,-1)- '  for x 2 ,  and 4+4, ,  ~ L ~ , + I I ~ .  g a + g 2 a 2 =  
(&/27r)(coth p 2 -  I)- '  forX,,.Thelinearcombination eA= e , A n ( r )  - e2A2 , ( r )  entering 
into (2.3) may be presented in the form 

eA =grad, ex e x =  e ,xlLr)-e2x21(r) .  
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Now we can write the classical Lagrangian (2.2) in the gauge invariant form 

The unitary transformation 

eliminates the vector potential from (2.3). Consider particular cases. Let the toron 
parameters be the same ( m ,  = m2 = m, e ,  = e2 = e, d ,  = d2 = d, R ,  = R, = R) except for 
the magnetic fluxes + I  and + 2 .  Then, 

xI2 = &x(r )  x21 = + d r )  

where ,y is obtained from (3.3) by dropping the overall factor +. Thus 

In addition, let +, =+,. Then A, ,  = A , ,  and 'Y='Y'. From (2.4) or (2.5) it follows 
that the vector potential drops out from the SE. This means that the presence of vector 
potentials outside the torons with + I  = +2 changes neither the dynamics of torons nor 
their exchange properties. If + I  = -& = 4 then (6.3) gives 

'Y='V'exp(-2iy,y) y = e$ /hc .  (6.4) 

If 'Y is chosen to be single-valued, then '4'' suffers the discontinuity 

W ( p s d - R ,  z = O - ) = e x p ( 2 i y ) ' V ' ( p s d - R ,  z=O+).  

It should be noted that the equality 4, = -+, does not mean that anyons are different. 
To see this we turn to figure 4. At the upper part of this figure we see two identical 

2 

1 t 

Figure4. Twotoroidal solenoids with equal (upper pan) and opposite (lowerpan) magnetic 
fluxes. 



2524 G N Afanasiev 

toroidal solenoids with + and - mean that the magnetic field 
( H  = e,g/p, g = +[2?i(d - d is directed from and towards the observer, 
respectively. It has the same direction in both the solenoids. Now we begin to rotate 
the second solenoid around the axis normal to the plane of the figure. After rotation 
at the angle ?i is performed, we obtain the situation shown at the lower part of the 
same figure. We observe that the magnetic field in the second solenoid has been changed 
to lie in the opposite direction. This means that for an external observer the magnetic 
fiox ofthe second !o:on has changed its sig:: azd that toro-s with $, = i?j2 are i-deed 
the same. Now we try to exchange torons with + I  = -+2 .  Firstly, however, we must 
know how the relative toroidal coordinates I*., 8 and Q entering into ,yI2 and x2, behave 
under the particle exchange. It follows from (3.2) that to r ,++r2 there corresponds 
p + ~ * . ,  8+-8+2?in, ~ + ~ + ( 2 m + l ) ? i .  This leads to the following change of ,y: 

figns 
R 11- 

x(-r) = -x(r)-  n. 

If the wave function ‘4’ is chosen to be symmetrical, then this results in the following 
behaviour of V’ under the particle exchange: 

V’(2,l) = V ’ ( l ,  2) exp(-4iy,y(r)-2iyn). (6.5) 

We see that exchange properties of torons depend essentially on their relative positions 
and orientations. For particular cases we obtain a situation similar to that of cyons. 
Let torons 1 and 2 be in such a relative position that x(1,2)=0. From the explicit 
expression for x (see (3.3)) it follows that this occurs, for example, for 8 =O.  This in 
turn happens either when the equatorial planes of the solenoids lie in the same plane 
(this corresponds to z = z, - z 2  = 0 in (3.2)), or when the torons are separated enough. 
The latter is due to the fact that toroidal angle # decreases at large distances ( O =  
( 2 m / r )  cos 8, for r+m) .  In this case (6.5) reduces to 

V’(2,l) =V’(1,2) exp(-2iyn). 

From this we obtain Bose, Fermi or intermediate statistics depending on the value 
of y ( - e + / h c ) .  

The fact that statistical properties of anyons can depend on their mutual separation 
is  not new. For two-dimensional anyons this has recently been proved in a very 
interesting paper, [isj (in the framework of tne Cnern-Simons gauge theory). When 
the torons’ dimensions tend to zero we obtain the magnetic toroidal moment [19] with 
electric charge attached. The unusual statistics is obtained for anyons with opposite 
toroidal moments. There is an intuitive explanation of such a different wavefunction 
behaviour for + I  = 4, and + I  = -+*. When torons with +, = +2 pass through each 
other (the upper part of figure 4) the net change of the wavefunction phase equals 
zero. in fact, the charge particie of ioron 2 passing iiirougii iiie hole of ioi~oii i 
contributes the value y to the phase while the particle of 1 passing through the hole 
of 2 contributes -y. When 6, = -& (the lower part of the same figure) both particles 
contribute the same phase y. 

When the symmetry axes of the torons have arbitrary orientation (i.e. they are 
neither parallel nor antiparallel) one should use in (2.3) vector potentials defined as 

(6.6) 

The angles Q, 8, Jr  define the orientation of the particular toron with respect to a fixed 
laboratory frame. The vector potentials A 2 ,  and A , 2  in the RHS of (6.6) are defined by 
(6.1). 

& , j = E R j K ( ~ I ,  O 1 , J r ~ ) A 2 ~ ~  

A,, ;=X RM(Q>,  62. JrdA121(. 
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7. Ambiguities arising from various choices of gauge 

At first we demonstrate arising uncertainties using two interacting cyons as an example. 
The vector potential of the cylindrical solenoid in a Coulomb gauge is equal to 
A =  e&p/2aR2 inside the solenoid ( p  < R )  and A = e&/27ip outside it ( p >  R). It 
falls as p-' at large distances from the axis. The magnetic field equals H = e,+/?rR2 
insidethesolenoidandzerooutsideit.Ontheotherhand,onemaye uall usethefollowing 
vector potentiais [IO, ii,2Oj: A ; = O  everywhere, A:= q b ( x + d ~ ~ - y ~ ) / ? r ~ ~  inside the 
solenoid. Outside, it differs from zero within the hatched strip (-R < y < R, x > m) shown in figure 5. There, it equals 2+&?=7/7iR2. This vector potential 
generates the same magnetic field as A. For the infinitely thin solenoid it reduces to 
A:=O, Ai,= qbO(x)s(y).  Now we return to interacting cyons. Inserting A' into (2.3) 
we obtain the following net cyon vector potentials entering there: 

2-4. . - 1 . . . . 

A,=O everywhere 1% f o r p < R  

A" = 

(Here x, y and p are relative coordinates.) This means that inside the total strip 
composed as shown in figure 5, and symmetrical to i?, A, = i2+&?=7/i/R1 for right 
and left half-strips, respectively. For the infinitely thin solenoid A." = 

coordinates lie in the hatched strip. Such a distinct behaviour of A and A'  means that 
one should not pay too much attention to the particular realization of vector potentials. 
According to Wu and Yang [21] only the phase factor exp((ie/hc) $A, dx,) is physi- 
cally meaningful and measurable. In fact, it is the same for A and A'. The vector 
potentials A and A'  are connected by the gauge transformation. The corresponding 

all observables are the same for Y and Y'. 
Going over to interacting torons we observe that in addition to the vector potential 

A of the toroidal solenoid discussed in section 3 there exists A' [ IO,  111, the single 
non-vanishing component of which (A : )  differs from zero in the vincinity nearest to 
the toroidal solenoid. It equals g I n ( d + m ) / p  inside the solenoid and g In(d+ 
m ) / ( d  --) outside it, in the hatched region (see figure 6). I t  is zero in 

.AS(.,)O<v\- O l - v \ \  Fin- th;c f n l l n r x i r  th-t slminnr i n t o m r t  nn1.r if their rolstiim Y"\y,",n, ", *,,. I."11. .... .".l".,I &L.YL "..,.,..' .... ..LyIL ".'LJ .I ....... 

Yavefunc!ion 9 and V' ale connected by !he unitary transfclrma!ion: This means !ha! 

Figure 5. The vector potential of cylindrical solenoids in a non-standard gauge. Outside 
the solenoid it differs from zero in the hatched region only. 
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Figure 6. The same as in figure 5 but for a toroidal solenoid. 

other space regions. For the infinitely thin solenoid ( R  << d )  it reduces to A: = 
@ ( z ) O ( d  - p )  [22]. The total net vector potential for two identical interacting torons 
(A'=Ai2(r)-Ak,(-r), r =  rl - r 2 )  equals zero if + I  =42 and twice the value of A: if 
$ I  = -42. This means that in such a gauge the torons interact only if their relative 
coordinates lie in the hatched region. It is easy to check that both A and A' satisfy 
the condition that $ A, dxl= + for closed contours passing through the solenoid's hole 
and zero otherwise. The vector potentials A and A' are connected by the gauge 
transformation A = A'fgrad Jol/Jz. For the infinitely thin ( R  d )  torons the function 
LI equals [ l l ,  231 (1/27r)4 (dx, dy,/lr- r, l) .  Here, integration is performed over the 
circle of the radius d lying in the z = 0 plane. The double integral may be expressed 
through the linear one [23]: Jj I r - r , l - 'dx,  d y , = 2 ? r ( ~ - I z I ) - 2 ~ ~ ~ d x x ~ " *  
x QIl2[(r2+x2+ d2)/2 dx]. The corresponding wavefunctions are connected by the 
singular (for the infinitely thin torons) but unitary transformation V =  
'€"exp[(ie/hc)(Ja/Jz)]. Hence it follows that V and 9' behave differently under 
particle exchange (in spite of the fact that they correspond to vector potentials with 
the same circulation). The main conclusion of this section is that exchange properties 
of the wavefunctions depend on the particular gauge choice. Thus, some caution is 
needed in their interpretation. 

8. Discussion 

Here we analyse the frequently used assertion [15-17] that there are no non-trivial 
exchange paths in three-dimensional space. Usually, one starts with the consideration 
of a plane with a singular isolated point P in it. It turns out that for a charged particle 
multi-valued wavefunctions are allowed if this point carries magnetic flux 4. In fact, 
a closed contour embracing P cannot be shrunk to a point without intersecting P. 
Going over to three-dimensional space, one encounters the following alternative. First, 
one may continue to treat P as an isolated singular point. In this case the above contour 
may be shrunk to a point without intersecting P (for this, one at first rotates half of 
the contour around the axis lying in the initial plane and passing through P). Therefore, 
multi-valued wavefunctions are not allowed. On the other hand, one may treat P as 
a trace of an infinite singular line 9 piercing the plane at P. The contour encircling 
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2' cannot be contracted without intersecting it. Multi-valued wavefunctions are allowed 
if 2 carries the magnetic flux 4, thus coinciding with an infinitely thin cylindrical 
solenoid. Let us have on the plane two singular points with 4, = -+*. This can be 
viewed as the traces of two parallel singular lines which pierce the plane at those 
points. For the charged particle one easily recovers topologically trivial (which embrace 
either both or none of the solenoids) and non-trivial (which embrace one of the 
solenoids) exchange paths [241. Physically, these singular lines can be realized as two 
cyiindricai soienoids with $ I  = -&.Tine charge panicle scattering on them was studied 
in [ l l ,  13,251. The singular line may also have a form of the circular filament which 
carries the magnetic flux 4 and which may be viewed as an infinitely thin toroidal 
solenoid. For the charged particle, multi-valued wavefunctions are allowed as the 
closed contours (passing the solenoid's hole) exist which cannot be shrunk to a point. 
The above singular lines may be considered as the limiting cases of the finite impen- 

sidered the behaviour of charge particles in the field of cylindrical and toroidal 
solenoids. Now we turn again to toroidal anyons. We have seen in section 6 that they 
exhibit fractional statistics with respect to their exchange. This contradicts the frequently 
occurring assertion (e.g. see, review [26] and references therein) that exotic statistics 
do  not exist if the number of spatial dimensions is greater than two. The proof grounds 

coinciding particle coordinates the remaining portion of space is multiconnected for 
d = 2 and simply connected for d a 3 [27,28]. In the treated case the part of space 
occupied by the coinciding identical torons is isomorphic to the torus. The remaining 
portion of space (lying outside that torus) is the multiconnected one. The dimensions 
of the toron may be arbitraily small, yet there remains a finite possibility for one 
pztic.c!zr toron !e penetrite !hrough !he ho!e of the o!her. This is !he rea~on fclr !hc 
appearance of non-standard statistics in the three-dimensional case. The reasoning of 
the cited references fails as the particles there were thought of as point-like structureless 
objects. The non-standard statistics disappears when the hole of a toron is closed. The 
smallness of the toron is not essential as the mutual penetration of torons does not 
depend on their dimensions. Only their non-trivial topology is important. The question 
arises of how to choose the mutua! orientation of the interacting torons. The angles 
describing this orientation enter into the hamiltonian as parameters. The reason for 
this is that the kinetic energy of the particles is taken to coincide with that for point 
particles. For the toron (however small its dimensions) the kinetic energy should 
depend on the orientation angles and corresponding momenta (like for the quantum 
symmetrical top). At the present stage of investigation the mutual orientation angles 
may be chosen from minimum energy considerations. We d o  not intend to elaborate 
further these points here. 

It would be appropriate to mention that there are three-dimensional objects exhibit- 
ing fractional statistics: the so-called dyons, which are composites of a monopole and 
a charged particle [ 6 , 8 ] .  Finally, there exists an excellent three-dimensional description 
[29] of the quantum Hall effect which does not appeal to its two-dimensional nature. 

eiia'iiz cy;ind~cai ioroida: soienoi& in figures 1-2. so fKi \vr have 

a r r a r + : n l l . i  nn +ha +"..nt tho+ nftnr +he r ~ m - . . ~ l  -f rh- -.-:.rtr ..n.me-n-..A:..m t- tha 
'""U..L.Y.., ".l L 1 . l  l Y l l  L . I Y L  1 1 1 L 1 .  ...U ...I.I""YL "L L l ' L  p"...L" '",.'"y"1.Y".~ L" L.1.. 

9. Conclusion 

The author, being a non-specialist in solid state physics, cannot appreciate the practical 
meaning of the results obtained. Probably, they have some relation to the recently 
observed fractional quantum Hall effect in three-dimensional structures [30]. 
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